MACROINVERTEBRATE ASSESSMENT OF THE LOWER SALUDA RIVER, DOWNSTREAM OF THE SALUDA HYDROELECTRIC PROJECT (LAKE MURRAY) OPERATED BY SOUTH CAROLINA ELECTRIC & GAS, LEXINGTON COUNTY, SOUTH CAROLINA

Fall 2007

Submitted To:

SOUTH CAROLINA ELECTRIC & GAS Columbia, South Carolina

Submitted By:

CARNAGEY BIOLOGICAL SERVICES, LLC 636 Westwood Drive Lexington, South Carolina 29073 (803) 233-6952

SCDHEC Laboratory Certification No. 32572

TABLE OF CONTENTS

		Page
	LIST OF TABLES	11
	LIST OF FIGURES	v
Ι	SUMMARY	1
II	INTRODUCTION	2
III	DESCRIPTION OF THE STUDY AREA	2
IV	MATERIALS AND METHODS	5
	A. Field Procedures	5
	1. Rapid Bioassessment Samples	5
	2. Hester Dendy Samples	5
	3. Physicochemical Measurements	5
	B. Laboratory Procedures	5
	C. Data Analysis	6
	1. Bioassessment Metrics	6
	2. Regression Analyses	7
	a. Rapid Bioassessment Data	7
	b. Hester Dendy Data	7
V	RESULTS	8
	A. Physicochemical Analysis	8
	B. Macroinvertebrate Community Analysis	9
	1. Rapid Bioassessment Samples (25 and 30 July 2007)	9
	2. Rapid Bioassessment Samples (19 September 2007)	10
	 Comparison of Rapid Bioassessment Samples from July and Septemberr 	12
	2. Hester Dendy Samples	12
VI	DISCUSSION	13
VII	REFERENCES	14

LIST OF TABLES

<u>Table</u>

- 1 Physicochemical data collected in conjunction with the macroinvertebrate assessment of the lower Saluda River downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.
- 2 Physicochemical data collected in conjunction with the macroinvertebrate assessment of the lower Saluda River downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.
- 3 Macroinvertebrates, their NCBI tolerance values (TV), functional feeding groups (FG), and relative abundance for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.
- 4 Bioassessment metrics for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.
- 5 Dominant taxa (>5% of the collection) for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.
- 6 Results of the linear regressions to detect differences in taxa richness, total abundance, EPT index, EPT abundance, NCBI, and percentage of the dominant taxon among sampling stations for the rapid bioassessment data collected at six lower Saluda River stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.
- 7 Macroinvertebrates, their NCBI tolerance values (TV), functional feeding groups (FG), and relative abundance for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.
- 8 Bioassessment metrics for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.

Page

8

8

16

23

24

28

LIST OF TABLES CONTINUED

9	Dominant taxa (>5% of the collection) for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.	36
10	Results of the linear regressions to detect differences in taxa richness, total abundance, EPT index, EPT abundance, NCBI, and percentage of the dominant taxon among sampling stations for the rapid bioassessment data collected at six lower Saluda River stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.	37
11	Results of the two-factor ANOVA without replication to detect differences in taxa richness between samples collected on 25 and 30 July 2007 and 19 September 2007.	40
12	Results of the two-factor ANOVA without replication to detect differences in total abundance between samples collected on 25 and 30 July 2007 and 19 September 2007.	40
13	Results of the two-factor ANOVA without replication to detect differences in EPT index values between samples collected on 25 and 30 July 2007 and 19 September 2007.	40
14	Results of the two-factor ANOVA without replication to detect differences in EPT Abundance between samples collected on 25 and 30 July 2007 and 19 September 2007.	40
15	Results of the two-factor ANOVA without replication to detect differences in NCBI between samples collected on 25 and 30 July 2007 and 19 September 2007.	41
16	Results of the two-factor ANOVA without replication to detect differences in percent dominant taxon between samples collected on 25 and 30 July 2007 and 19 September 2007.	41
17	Macroinvertebrates, their NCBI tolerance values (TV) and functional feeding groups (FG) for the five lower Saluda River Hester Dendy stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 July 2007 to 19 September 2007.	45
18	Bioassessment metrics for the five lower Saluda River Hester Dendy stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 July 2007 to 19 September 2007.	52

LIST OF TABLES CONTINUED

19 Results of the linear regressions to detect differences in taxa richness, total abundance, EPT index, EPT abundance, NCBI, and percentage of the dominant taxon among sampling stations for the Hester Dendy data collected on the lower Saluda River, downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 July 2007 to 19 September 2007.

LIST OF FIGURES

Figure		Page
1	Sampling locations for benthic macroinvertebrates collected from the lower Saluda River, downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina.	3
2	Plot comparing NCBI data from rapid bioassessment samples collected from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, collected 25 and 30 July 2007.	27
3	Plot comparing NCBI data from rapid bioassessment samples collected from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, collected 19 September 2007.	38
4	Plots comparing data from rapid bioassessment samples collected on 25 and 30 July 2007 and 19 September 2007 from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South	
	Carolina.	42

5 Plots comparing data from rapid bioassessment samples and mean values from Hester Dendy samples collected from the lower Saluda River, downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, Fall 2007.

I. SUMMARY

On 25 and 30 July 2007 and 19 September 2007, personnel from CARNAGEY BIOLOGICAL SERVICES, LLC (SCDHEC Laboratory Certification No. 32010), SOUTH CAROLINA ELECTRIC & GAS (SCE&G), and KLEINSCHMIDT ASSOCIATES conducted an instream benthic macroinvertebrate community rapid bioassessment on the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SCE&G. Additionally, three replicate Hester Dendy multi-plate macroinvertebrate samplers were placed at each sampling station on 25 July 2007, allowed to colonize, and collected on 19 September 2007 to compare with the rapid bioassessment data.

To determine if macroinvertebrate communities differed significantly between sampling stations, data were analyzed with linear regression. Regression analysis of the Hester Dendy data showed biotic conditions improved significantly as distance from the dam increased. This result was expected. Studies have demonstrated that rapid fluctuations in current velocity and water level associated with the operation of hydroelectric dams results in reduced diversity, by decreasing habitat and/or survival of habitat-specific taxa (Death, 1995; Death and Winterbourn, 1995; Ward and Stanford, 1995; Valentin *et al.*, 1995). As distance from the dam increases, the fluctuations in current velocity and water level are smaller and slower, resulting in improved biotic conditions.

For the rapid bioassessment data, regression analysis showed no detectable trends in taxa richness, total abundance, or in percentage of the dominant taxon as a function of distance from the hydroelectric dam in July or in September. The July samples did show a significant increase in the EPT indices as distance from the dam increased. The September samples showed a significant increase in EPT index and EPT abundance values as distance from the dam increased in NCBI values as distance from the dam increase in NCBI values as distance from the dam increase the Hester-Dendy data.

Comparing the two methods, the Hester Dendy method detected trends among stations that were not statistically significant for the rapid bioassessment data. This may be due to the high sampling variability of rapid bioassessment samples. There is greater variability in the rapid bioassessment data because this method only samples the river margins, where habitat is less stable due to river level fluctuations. The Hester Dendy samplers provide a more stable habitat, and lower variability in the samples enables the detection of trends in the macroinvertebrate community.

II. INTRODUCTION

On 25 and 30 July 2007 and 19 September 2007, personnel from CARNAGEY BIOLOGICAL SERVICES, LLC, SOUTH CAROLINA ELECTRIC & GAS (SCE&G), and KLEINSCHMIDT ASSOCIATES, conducted a benthic macroinvertebrate rapid bioassessment on the lower Saluda River downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SCE&G.

The hydroelectric dam produces electricity from water obtained from Lake Murray. This water is released into the lower Saluda River and can affect the benthic macroinvertebrate communities downstream in several ways. First, mechanical disturbance results from rapid changes in water level and current velocity during the production of power. This disturbance can reduce the amount of stable macroinvertebrate habitats, including stream banks, leaf packs, and fine sediment deposits (Stalnaker *et al.*, 1989; Death, 1995; Ward and Stanford, 1995; Valentin *et al.*, 1995). Secondly, due to the thermal stratification of Lake Murray in summer, the release of anoxic water from the hypolimnion can reduce oxygen levels of the lower Saluda River. This can reduce the amount of suitable habitat for macroinvertebrates, which require oxygen to live.

Due to a lack of reference or control stations, it is not possible to determine if operation of the hydroelectric dam (rapid, periodic fluctuations in water level and current velocity) has *caused* a reduction in the diversity and abundance of the macroinvertebrate community at the sampled locations. However, this study can answer the following questions:

- 1) Are there significant differences in the macroinvertebrate community as a function of distance from the hydroelectric dam?
- 2) What differences were found between rapid bioassessment and Hester Dendy multiplate sampler collection methods?

III. DESCRIPTION OF THE STUDY AREA

Six stations were sampled on the lower Saluda River, beginning directly downstream from the hydroelectric dam's release and ending approximately 10.5 kilometers downstream (Figure 1). The first sampling site, Station TR, was established approximately 500 meters downstream from the hydroelectric dam. Available habitat consisted of thick mats of submerged aquatic macrophytes, submerged logs, some large boulders, and gravel. Some sand was also present.

Figure 1. Sampling locations for benthic macroinvertebrates collected from the lower Saluda River, downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina.

The second sampling site, Station SPW, was located in the side channel formed by the dam's spillway. This channel was located approximately one kilometer downstream from the hydroelectric dam. When not in use, the spillway channel receives water only from seeps along the banks, leakage from spillway gates, and the backwater effect from the Saluda's mainstem. Available habitats included submerged aquatic macrophytes, vegetated banks, large rocks and boulders, and the gravel, sand and detritus that made up the channel bottom.

The third river sampling site, Station MR, was located just upstream of the confluence with Twelve Mile Creek and approximately 4.5 kilometers downstream from the hydroelectric dam. Available habitats included submerged logs, aquatic macrophytes, snags, large rocks, vegetated banks, and the muddy channel bottom.

The fourth river sampling site, Station LR, was located between the Interstate 20 and Interstate 26 bridges and approximately 8.5 kilometers downstream from the hydroelectric dam. Available habitats included submerged logs, snags, vegetated banks, a riffle area, and the muddy channel bottom. Large boulders were present in the deeper parts of the section.

The fifth river sampling site, Station OB, was located near the Ocean Boulevard shoal area and approximately 9.5 kilometers downstream from the hydroelectric dam. Available habitats included submerged logs, snags, vegetated banks, large boulders and rocks, aquatic macrophytes, and the gravel and sand river bottom. This section has a large gravel riffle.

The sixth river sampling site, Station ZO was located near the Riverbanks Zoo river access and approximately 10.5 kilometers downstream from the hydroelectric dam. Available habitats included submerged logs, snags, vegetated banks, and the muddy channel bottom. In addition, large boulders were present.

Previous rapid bioassessments included other sampling sites. These stations included Stations UR and OX. Station UR was located in a shoal area of the main river channel, approximately 50 meters downstream of the spillway channel entrance and 30 meters from the north bank. Station OX was established in an oxbow pond on the south side of the main river channel, approximately 1.5 kilometers downstream from the hydroelectric dam. The oxbow pond is connected to the main river channel by a channel 50 meters wide and is flushed during periods of high water.

IV. MATERIALS AND METHODS

A. Field Procedures

1. Rapid Bioassessment Samples

Aquatic macroinvertebrates were qualitatively collected from all available habitats (e.g., stream margins, leaf packs, aquatic vegetation, water soaked logs and sand deposits) using a D-frame aquatic dip net and by picking organisms from substrates with forceps. Sampling was conducted along a 10-50 meter area at each location to the depth of approximately one meter. For each station, collections from all habitat types were pooled to form one aggregate sample and preserved in the field with 80% ethanol. Each sample represented 1.5 man-hours of sampling effort by experienced biologists. Sampling procedures were kept similar at each station to enable taxonomic and numerical population comparisons between stations.

2. Hester Dendy Samples

Additionally, three replicate Hester Dendy multi-plate macroinvertebrate samplers were placed at five stations, allowed to colonize for seven weeks, and collected for analyses. The samplers were preserved in the field with 70% ethanol and returned to CARNAGEY BIOLOGICAL SERVICES, LLC for sample processing. Hester Dendy samplers were colonized from 25 July 2007 to 19 September 2007.

3. Physicochemical Measurements

In conjunction with the macroinvertebrate assessment, water temperature, dissolved oxygen, pH, and conductivity were measured using a Yellow Springs Instruments Model 55 Dissolved Oxygen meter and a Yellow Springs Instruments Model 63 Multimeter.

B. Laboratory Procedures

Upon return to the laboratory, the macroinvertebrates were removed from any debris with the aid of a stereo microscope, identified to the lowest positive taxonomic level, and enumerated using appropriate techniques and taxonomic keys. All specimens will be maintained by CARNAGEY BIOLOGICAL SERVICES, LLC, in a voucher collection for five years, or placed into the permanent reference collection.

C. Data Analysis

To obtain the most information possible from the data, several types of analysis were performed. Bioassessment metrics allowed comparison of stations based on their overall taxonomic composition. Regression analyses detected trends in macroinvertebrate community composition with distance from the dam. Additionally, comparison of the July rapid bioassessment samples to the September rapid bioassessment samples was based on two-factor ANOVAs without replication. Data were $log_{10}(x+1)$ transformed prior to analysis.

1. Bioassessment Metrics

Comparisons of the macroinvertebrate communities were based on changes in taxonomic composition between sampling sites and on the known tolerance levels and life history strategies of the organisms encountered. Changes in taxonomic composition were determined using the metrics outlined in Rapid Bioassessment Protocol III of *Rapid bioassessment protocols for use in streams and rivers* (Plafkin et al. 1989). These metrics include the following:

a) Taxa richness - The number of different taxa found at a particular location is an indication of diversity. Reductions in community diversity have been positively associated with various forms of environmental pollution, including nutrient loading, toxic substances, and sedimentation (Barbour *et al.*, 1996; Fore *et al.*, 1996; Rosenberg and Resh, 1993; Shackleford, 1988).

b) EPT Index - EPT Index is the number of taxa from the insect orders Ephemeroptera, Plecoptera and Trichoptera found at a station. These three insect orders are considered to be intolerant of adverse changes in water quality, especially temperature and dissolved oxygen, and therefore, a reduction in these taxa is indicative of reduced water quality (Barbour *et al.*, 1996; Lenat, 1988).

c) Chironomidae taxa and abundance - The Chironomidae are a taxonomically and ecologically diverse group with many taxa which are tolerant of various forms of pollution. The chironomids are often the dominant group encountered at impacted or stressed sites (Rosenberg and Resh, 1993).

d) Ratio of EPT and Chironomidae abundance - The relative abundance of these four indicator groups is a measure of community balance. When comparing sites, good biotic conditions are reflected in a fairly even distribution among these four groups (Plafkin *et al.*, 1989). The value of this ratio is reduced by impact due to the general reduction of the more sensitive EPT taxa and an increase in the more tolerant chironomid taxa.

e) Ratio of scraper/scraper and filtering collectors - When comparing sites, shifts in the dominance of a particular feeding type may indicate a community responding to an overabundance of a particular food source or toxicants bound to a particular food source (Rosenberg and Resh, 1993).

f) Shredder/total number of specimens collected - When comparing sites, reductions in the relative abundance of shredders can indicate changes in the quality or quantity of riparian zone vegetation or the presence of toxic substances bound to organic carbon contained in the leaf and woody material which comprises their food source (Plafkin *et al.*, 1989).

g) Percent contribution of dominant taxon - This measures the redundancy and evenness of the community structure. It assumes a highly redundant community reflects an impaired community because as the more sensitive taxa are eliminated, there is often a significant increase in the remaining tolerant forms (Barbour *et al.*, 1996; Shackleford, 1988).

h) North Carolina biotic index (NCBI) - NCBI = TV_iN_i/N where TV_i is the tolerance value for the *i*th taxon, N_i is the abundance of the *i*th taxon, and N is the total abundance of all taxa in the sample. This index utilizes a pollution tolerance value developed over a wide range of conditions and pollution types and taxon abundance to assess the amount of impact (North Carolina Department of Environment, Health and Natural Resources, 1997). The values range from 0-10, increasing as water quality decreases. This metric appears to be adversely affected by the combination of low taxa richness and low abundance, often indicating better conditions than actually exist.

2. Regression Analyses

a. Rapid Bioassessment Data

To detect trends in the macroinvertebrate community as a function of distance from the hydroelectric dam (sampling station), six linear regression analyses were performed on the rapid bioassessment data. Data were $log_{10}(x+1)$ transformed prior to regressing taxa richness, total abundance, EPT index, EPT abundance, NCBI values, and percentage of the dominant taxon on distance from the dam. Plots of data were constructed if any trends were detected (alpha ≤ 0.05) among stations.

b. Hester Dendy Data

To detect trends in the macroinvertebrate community as a function of distance from the hydroelectric dam (sampling station), six linear regression analyses were performed on the

Hester Dendy data. Data were $\log_{10}(x+1)$ transformed prior to regressing taxa richness, total abundance, EPT index, EPT abundance, NCBI values, and percentage of the dominant taxon on distance from the dam. Plots of data were constructed if any trends were detected (alpha ≤ 0.05) among stations.

V. RESULTS

A. Physicochemical Analysis

The water chemistry data taken in conjunction with the macroinvertebrate assessment are presented in Tables 1 and 2.

Table 1. Physicochemical data collected in conjunction with the macroinvertebrate assessments of the lower Saluda River downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.

		Station										
Parameter	TR	SPW	MR	LR	OB	ZO						
Temperature (°C)	15.2	16.0	17.1	17.9	18.7	18.3						
Dissolved Oxygen (mg/l)	9.64	6.85	10.32	9.90	9.76	6.83						
pH (SU)	6.52	6.69	6.99	6.99	7.11	7.15						
Conductivity (µS/cm)	64.4	68.0	66.5	70.1	69.9	72.1						

Table 2. Physicochemical data collected in conjunction with the macroinvertebrate assessments of the lower Saluda River downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.

		Station											
Parameter	TR	SPW	MR	LR	OB	ZO							
Temperature (°C)	17.7	17.7	17.8	18.3	18.4	18.3							
Dissolved Oxygen (mg/l)	8.92	8.86	10.78	9.68	9.15	8.76							
pH (SU)	6.73	6.40	6.83	6.71	6.91	7.12							
Conductivity (µS/cm)	105.6	89.3	87.2	89.7	86.8	90.0							

- B. Macroinvertebrate Community Analysis
- 1. Rapid Bioassessment Samples (25 and 30 July 2007)

A total of 1123 specimens representing 69 taxa were collected from six sampling stations during this assessment. The number of specimens collected, their NCBI tolerance values, functional feeding groups, and relative abundance are presented in Table 3 for each station. Bioassessment metrics for each sampling station are presented in Table 4. Table 5 lists the number of specimens and relative abundance of dominant taxa (>5% of the collection) for each station.

The sampling effort at Station TR yielded 214 specimens representing 22 taxa (Table 3). An EPT index of 4 was calculated for this station, and the NCBI value of 8.11 resulted in a water quality rating of "poor" (Table 4). The Chironomidae were represented by 7 taxa and contributed 24% of the collection. The dominant functional feeding group was the scrapers, which contributed 47% of the collection. The dominant taxon was *Dicrotendipes* sp., contributing 21% of the specimens collected (Table 5).

The sampling effort at Station SPW yielded 323 specimens representing 34 taxa (Table 3). An EPT index of 4 was calculated for this station, and the NCBI value of 7.48 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by 7 taxa and contributed 13% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 26% of the collection. The dominant taxon was *Gammarus* sp., contributing 14% of the specimens collected (Table 5).

The sampling effort at Station MR yielded 180 specimens representing 29 taxa (Table 3). An EPT index of 10 was calculated for this station, and the NCBI value of 6.60 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by 4 taxa and contributed 6% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 53% of the collection. The dominant taxon was *Caecidotea* sp., contributing 19% of the specimens collected (Table 5).

The sampling effort at Station LR yielded 214 specimens representing 26 taxa (Table 3). An EPT index of 11 was calculated for this station, and the NCBI value of 6.48 resulted in a water quality rating of "good-fair" (Table 4). The Chironomidae were represented by 3 taxa and contributed 2% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 54% of the collection. The dominant taxon was *Caecidotea* sp., contributing 18% of the specimens collected (Table 5).

The sampling effort at Station OB yielded 192 specimens representing 26 taxa (Table 3). An EPT index of 10 was calculated for this station, and the NCBI value of 6.02 resulted in a water quality rating of "good-fair" (Table 4). The Chironomidae were represented by 5 taxa and contributed 4% of the specimens collected. The dominant functional feeding group was the collector-filterers, which contributed 34% of the collection. The dominant taxon was *Baetis intercalaris*, contributing 13% of the specimens collected (Table 5).

The sampling effort at Station ZO yielded 185 specimens representing 40 taxa (Table 3). An EPT index of 9 was calculated for this station, and the NCBI value of 6.92 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by a 12 taxa and contributed 15% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 34% of the collection. The dominant taxon was *Campeloma decisum*, contributing 14% of the specimens collected (Table 5).

Regression analysis of the rapid bioassessment data showed no detectable trends (alpha \leq 0.05) in taxa richness, total abundance, EPT abundance, NCBI, or in percentage of the dominant taxon as a function of distance from the hydroelectric dam(Table 6). EPT indices increased significantly as a function of distance from the hydroelectric dam (Table 6, Figure 2).

2. Rapid Bioassessment Samples (19 September 2007)

A total of 1132 specimens representing 69 taxa were collected from six sampling stations during this assessment. The number of specimens collected, their NCBI tolerance values, functional feeding groups, and relative abundance are presented in Table 7 for each station. Bioassessment metrics for each sampling station are presented in Table 8. Table 9 lists the number of specimens and relative abundance of dominant taxa (>5% of the collection) for each station.

The sampling effort at Station TR yielded 208 specimens representing 26 taxa (Table 3). An EPT index of 3 was calculated for this station, and the NCBI value of 8.29 resulted in a water quality rating of "poor" (Table 4). The Chironomidae were represented by 3 taxa and contributed 5% of the collection. The dominant functional feeding group was the predators, which contributed 37% of the collection. The dominant taxon was *Enallagma* sp., contributing 32% of the specimens collected (Table 5).

The sampling effort at Station SPW yielded 237 specimens representing 31 taxa (Table 3). An EPT index of 6 was calculated for this station, and the NCBI value of 7.87 resulted in a water quality rating of "poor" (Table 4). The Chironomidae were represented by 7 taxa and contributed 13% of the specimens collected. The dominant functional feeding groups were the predators and the scrapers, which each contributed 31% of the collection. The dominant taxon was *Enallagma* sp., contributing 19% of the specimens collected (Table 5).

The sampling effort at Station MR yielded 201 specimens representing 27 taxa (Table 3). An EPT index of 7 was calculated for this station, and the NCBI value of 6.51 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by 3 taxa and contributed 5% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 46% of the collection. The dominant taxon was *Simulium confusum*, contributing 15% of the specimens collected (Table 5).

The sampling effort at Station LR yielded 215 specimens representing 32 taxa (Table 3). An EPT index of 12 was calculated for this station, and the NCBI value of 6.87 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by 4 taxa and contributed 6% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 71% of the collection. The dominant taxon was *Caecidotea* sp., contributing 29% of the specimens collected (Table 5).

The sampling effort at Station OB yielded 271 specimens representing 32 taxa (Table 3). An EPT index of 12 was calculated for this station, and the NCBI value of 6.70 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by 4 taxa and contributed 4% of the specimens collected. The dominant functional feeding group was the collector-filterers, which contributed 40% of the collection. The dominant taxon was *Hydropsyche mississipiensis*, contributing 20% of the specimens collected (Table 5).

The sampling effort at Station ZO yielded 168 specimens representing 32 taxa (Table 3). An EPT index of 10 was calculated for this station, and the NCBI value of 6.49 resulted in a water quality rating of "fair" (Table 4). The Chironomidae were represented by a 3 taxa and contributed 4% of the specimens collected. The dominant functional feeding group was the scrapers, which contributed 40% of the collection. The dominant taxon was *Maccaffertium modestum*, contributing 10% of the specimens collected (Table 5).

Regression analysis of the rapid bioassessment data showed no detectable trends (alpha \leq 0.05) in taxa richness, total abundance, or in percentage of the dominant taxon as a function of distance from the hydroelectric dam(Table 9). EPT indices and EPT abundance increased significantly as a function of distance from the hydroelectric dam (Table 9, Figure 3). NCBI values decreased significantly as a function of distance from the hydroelectric dam (Table 9, Figure 3).

3. Comparison of Rapid Bioassessment Samples from July and September

Results of two-factor ANOVAs without replication to detect differences in taxa richness, total abundance, EPT index values, EPT abundance, NCBI values, and percent dominant taxon between samples collected on 25 and 30 July 2007 and 19 September 2007 are presented in Tables 11-16. Plots of the data are given in Figure 4. None of the metrics showed significant differences between the two months.

4. Hester Dendy Samples

A total of 1784 specimens representing 57 taxa were collected from the six Hester Dendy stations. Three replicates were collected at each station, except Stations MR and OB, which only had two replicates retrieved at each. The number of specimens collected, their NCBI tolerance values, and functional feeding groups are presented in Table 17 for each sample. Bioassessment metrics for each sample are presented in Table 18.

The bioassesment metrics indicated several differences between the stations. All replicates at Stations TR SPW, MR, and LR had "poor" NCBI water quality conditions. Station OB had a replicate with a "fair" NCBI rating and a replicate with a "good-fair" rating. All replicates at Station ZO had ratings of "fair". Stations TR, SPW, MR, LR, and ZO were dominated by scrapers. TR had a single replicate dominated by collector-gatherers, SPW a single replicate dominated by omnivores, and ZO a single replicate dominated by collector-gatherers. Station OB was dominated by collector-filterers.

Regression analysis of the Hester Dendy samples showed significant increases (alpha \leq 0.05) in taxa richness with increasing distance from the hydroelectric dam (Table 19, Figure 5). NCBI values and percentage of the dominant taxon both decreased significantly as distance from the hydroelectric dam increased (Table 19, Figure 5). Total abundance, EPT indices, and EPT abundance showed no significant difference with increasing distance from the hydroelectric dam.

VI. DISCUSSION

Regression analysis of the Hester Dendy data showed biotic conditions improved significantly as distance from the dam increased. This result was expected, as studies have demonstrated that rapid fluctuations in current velocity and water level (associated with the operation of hydroelectric dams) results in reduced diversity, by decreasing habitat and/or survival of habitat-specific taxa (Death, 1995; Death and Winterbourn, 1995; Ward and Stanford, 1995; Valentin *et al.*, 1995). As distance from the dam increases, the fluctuations in current velocity and water level are smaller and slower, resulting in improved biotic conditions.

For the rapid bioassessment data, regression analysis showed no detectable trends in taxa richness, total abundance, or in percentage of the dominant taxon as a function of distance from the hydroelectric dam in July or in September. In addition, none of the metrics showed a significant difference when compared between the July sample and the September sample. The July samples did show a significant increase in the EPT indices as distance from the dam increased. The September samples showed a significant increase in EPT index and EPT abundance values as distance from the dam increased. The September samples also showed a significant decrease in NCBI values as distance from the dam increased. This supports the conclusion that as the distance from the dam increases, fluctuations in current velocity and water levels decrease and biotic conditions are improved.

Comparing the two methods, the Hester Dendy method detected trends among stations that were not statistically significant for the rapid bioassessment data. This may be due to the high sampling variability of rapid bioassessment samples. There is greater variability in the rapid bioassessment data because this method only samples the river margins, where habitat is less stable due to river level fluctuations. The Hester Dendy samplers provide a more stable habitat, and lower variability in the samples enables the detection of trends in the macroinvertebrate community.

- Barbour, M.T.; J. Gerritsen; G.E. Griffith; R. Frydenborg; E. McCarron; J.S. White; and M.L. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 15:185-211.
- Death, R.G. 1995. Spatial patterns in benthic invertebrate community structure: products of habitat stability or are they habitat specific. Freshwater Biology 33: 455-467.
- Death, R.G. and M.J. Winterbourn. 1995. Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology 76(5): 1446-1460.
- Fore, L.S.; J.R. Karr; and R.W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluation of alternative approaches. J. N. Am. Benthol. Soc. 15:212-232.
- Lenat, D.R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Am. Benthol. Soc. 7: 222-233.
- North Carolina Department of Environment, Health and Natural Resources. 1997. *Standard operating procedures: biological monitoring*. State of North Carolina. Division of Water Quality, North Carolina Department of Environment, Health and Natural Resources, Raleigh, NC, 65 pp.
- Plafkin, J.L.; M.T. Barbour; K.D. Porter; S.K. Gross; and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers. US EPA Assessment and Watershed Protection Division, Washington, D.C. EPA/444/4-89/001.
- Rosenberg, D.M. and V.H. Resh (eds.) 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, New York. 488pp.
- Shackleford, B. 1988. Rapid bioassessment of lotic macroinvertebrate communities: Biocriteria development. Biomonitoring Section, Arkansas Dept. Poll. Contl. And Ecol. Little Rock, Ark. 45pp.

Stalnaker, C. B., R. T. Milhous, and K. D. Bovee. 1989. Hydrology and hydraulics applied to fishery management in large rivers. Page 13 in D. P. Dodge (editor). Proceedings of the International Eastern Rivers and Mountains Network – Phase I: Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106.

Valentin, S.; J.G. Wasson; and M. Philippe. 1995. Effects of hydropower peaking on epilithon and invertebrate community trophic structure. Regulated Rivers: Research and Management 10: 105-119. Ward, J.V. and J.A. Stanford. 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management 11: 105-119.

Table 3. Macroinvertebrates, their NCBI tolerance values (TV), functional feeding groups (FG), and relative abundance for the six lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.

					No.	of Ind	ividua	ls			Rela	tive A	bunda	nce	
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Ann	elida														
Hiru	ıdinea														
Rhy	ynchobdellida														
Glossiphoniidae															
1	Helobdella triserialis	9.20	Р		1						0.00				
Olig	gochaeta														
Haj	plotaxida														
Lu	mbricidae														
2	Lumbricidae Genus species		SC	5						0.02					
Lui	nbriculida														
Lu	mbriculidae														
3	Lumbriculidae Genus species	7.03	SC	3	2					0.01	0.01				
Tul	oificida														
Tu	bificidae														
4	Tubifex tubifex	10.00	SC	15	18	11	16	3	6	0.07	0.06	0.06	0.07	0.02	0.03
Arth	ropoda														
Ara	chnoidea														
Aca	ariformes														
Ну	drachnidae														
5	Hydrachna sp.	5.53	Р	7	14		2	1	4	0.03	0.04		0.01	0.01	0.02

Table 3.	Continued.	

					No.	of Indi	ividua	ls			Relative Abundance					
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO	
Cru	stacea															
Am	phipoda															
Ga	mmaridae															
6	Gammarus sp.	9.10	OM	35	46	4	6		15	0.16	0.14	0.02	0.03		0.08	
Talit	ridae															
7	Hyalella azteca	7.75	OM	9	13	1	1	5	8	0.04	0.04	0.01	0.00	0.03	0.04	
Cla	docera															
Da	phnidae															
8	Daphnia sp.		CF		12				1		0.04				0.01	
Dec	capoda															
Ca	mbaridae															
9	Cambaridae Genus species		OM			1	1	3				0.01	0.00	0.02		
Pa	laemonidae															
10	Palaemonetes sp.	7.10	OM		3				1		0.01				0.01	
Iso	poda															
As	ellidae															
11	Caecidotea sp.	9.11	SC	38	18	34	39	4	7	0.18	0.06	0.19	0.18	0.02	0.04	
Hex	apoda															
Col	eoptera															
Dy	tiscidae															
12	Neoporus sp.		Р			1			1			0.01			0.01	

					No.	of Indi	i vidu a	ls			Rela	tive A	bunda	nce	
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Eh	nidae														
13	Dubiraphia quadrinotata	5.93	CG			1						0.01			
Ha	liplidae														
14	Haliplus fasciatus	8.71	SH		8						0.02				
15	Peltodytes sexmaculatus	8.73	SH			1			2			0.01			0.01
Dip	tera														
Ce	ratopogonidae														
16	Bezzia/Palpomyia sp.	6.86	Р		3						0.01				
Chironomidae															
17	Ablabesmyia mallochi	7.19	Р	1					2	0.00					0.01
18	Ablabesmyia peleensis	9.67	Р	2					1	0.01					0.01
19	Chironomus sp.	9.63	CG		1			1			0.00			0.01	
20	Clinotanypus sp.		Р		1						0.00				
21	Cryptochironomus sp.	6.40	Р			3			1			0.02			0.01
22	Dicrotendipes sp.	8.10	CG	44	31	3	1	2	5	0.21	0.10	0.02	0.00	0.01	0.03
23	Orthocladius sp.	5.94	SH	1		3			3	0.00		0.02			0.02
	Paralauterborniella														
24	nigrohalterale	4.77	CG			1						0.01			
25	Phaenopsectra obediens gr.	6.50	SC						5						0.03
26	Polypedilum flavum	5.78	SH		2						0.01				
27	Polypedilum illinoense gr.	9.00	SH	1	4				4	0.00	0.01				0.02

					No.		Rela	tive A	bunda	nce					
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Ch	ironomidae cont.														
28	Procladius sp.	9.10	Р	2	1				2	0.01	0.00				0.01
29	Rheocricotopus robacki	7.28	CG				2	2					0.01	0.01	
30	Rheotanytarsus exiguus gr.	5.89	CF	1				2	1	0.00				0.01	0.01
31	Tanytarsus sp.	6.76	CF		2				2		0.01				0.01
32	Thienemanniella xena	5.86	CG						1						0.01
33	Thienemannimyia gr.	8.42	Р				1	1	1				0.00	0.01	0.01
Sir	Simuliidae														
34	Simulium confusum	4.00	CF				7	19	8				0.03	0.10	0.04
35	Simulium tribulatum/venustrum	4.00	CF			20	32	7	1			0.11	0.15	0.04	0.01
Tij	pulidae														
36	Tipula sp.	7.33	SH					2						0.01	
Ep	hemeroptera														
Ba	etidae														
37	Baetis intercalaris	4.99	CG			4	13	25	12			0.02	0.06	0.13	0.06
38	Heterocloeon sp.	3.48	SC			17	12	12	4			0.09	0.06	0.06	0.02
39	Procloeon sp.	5.00	OM		7						0.02				
40	Pseudocloeon propinquum	5.77	CG			13	8	12	8			0.07	0.04	0.06	0.04
Ca	enidae														
41	Caenis sp.	7.41	CG	1	6					0.00	0.02				

					No.	of Ind	ividua	ıls		Relative Abundance						
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO	
He	Heptageniidae															
42	42 Maccaffertium modestum		SC				5	12					0.02	0.06		
43 Stenacron interpunctatum 6		6.87	SC		25	2	2	1	2		0.08	0.01	0.01	0.01	0.01	
Het	teroptera															
Co	rixidae															
44	Trichocorixa sp.	9.00	Р		8				2		0.02				0.01	
Ve	liidae															
45	Microvelia sp.		Р		1				1		0.00				0.01	
Od	onata															
Ae	shnidae															
46	Boyeria vinosa	5.89	Р		2	2			1		0.01	0.01			0.01	
Co	enagrionidae															
47	Enallagma sp.	8.91	Р	2	40				4	0.01	0.12				0.02	
48	Ischnura posita	9.52	Р		2	1	1				0.01	0.01	0.00			
49	Ischnura sp.	9.52	Р		4						0.01					
Go	mphidae															
50	Aphylla williamsoni		Р		1						0.00					
Lil	pellulidae															
51	Neurocordulia sp.	5.03	Р		6						0.02					
Tri	choptera															
Br	achycentridae															
52	Micrasema wataga	2.63	SH			6	3					0.03	0.01			

					No.	of Ind	ividua	ls		Relative Abundance						
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO	
Ну	Hydropsychidae															
53	Cheumatopsyche sp.	6.22	CF			9	15	4	21			0.05	0.07	0.02	0.11	
54	Hydropsyche betteni	7.78	CF			2	2	22	1			0.01	0.01	0.11	0.01	
55	55 Hydropsyche venularis 4.96		CF			4	1	11	1			0.02	0.00	0.06	0.01	
Ну	droptilidae															
56	Hydroptila sp.	6.22	SC	9		3	10			0.04		0.02	0.05			
Le	pidostomatidae															
57	57 Lepidostoma sp.0.90		SH					4						0.02		
Leptoceridae																
58	8 Mystacides sepulchralis		CG						1						0.01	
59	Oecetis sp.	4.70	Р	1		1		1		0.00		0.01		0.01		
60	Triaenodes ignitus	4.58	SH						1						0.01	
61	Triaenodes injustus	2.47	SH		14						0.04					
Po	lycentropodidae															
62	Phylocentropus carolinus	6.20	CF	1						0.00						
63	Phylocentropus placidus	6.20	CF				1						0.00			
Mol	usca															
Biva	alvia															
Un	ionoida															
Co	rbiculidae	piculidae														
64	Corbicula fluminea	6.12	CF			1	2					0.01	0.01			

					No.	of Ind	ividua	ls		Relative Abundance						
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO	
Sphaeriidae																
65 Sphaeriidae Genus species			CF		2						0.01					
Gas	tropoda															
Limnophila																
Ph	ysidae															
66	Physa sp.	8.84	SC	15	8	16	22	17	9	0.07	0.02	0.09	0.10	0.09	0.05	
Planorbidae																
67	Helisoma anceps	6.23	SC	15	14	13	9	6	4	0.07	0.04	0.07	0.04	0.03	0.02	
Me	sogastropoda															
Vi	viparidae															
68	Campeloma decisum		SC						26						0.14	
Plat	yhelminthes															
Turbellaria																
Tri	cladida															
Planariidae																
69	Dugesia tigrina	7.23	OM	6	3	2		13	5	0.03	0.01	0.01		0.07	0.03	

Table 4.Bioassessment metrics for the six lower Saluda River rapid bioassessment stations
downstream from the Saluda Hydroelectric Project (Lake Murray) operated by
SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25
and 30 July 2007.

			Sta	tion		
Metric	TR	SPW	MR	LR	OB	ZO
Taxa Richness	22	34	29	26	26	40
Number of Specimens	214	323	180	214	192	185
EPT Index	4	4	10	11	10	9
EPT Abundance	12	52	61	72	104	51
Chironomidae Taxa	7	7	4	3	5	12
Chironomidae Abundance	52	42	10	4	8	28
EPT/Chironomidae Abundance	0.23	1.24	6.10	18.00	13.00	1.82
North Carolina Biotic Index	8.11	7.48	6.60	6.48	6.02	6.92
SCDHEC Bioclassification	1.0	1.5	2.5	2.5	2.8	1.5
Percent Collector-Filterers	0.93	4.95	20.00	28.04	33.85	19.46
Percent Collector-Gatherers	21.03	11.76	12.22	11.21	21.88	14.59
Percent Omnivores	23.36	22.29	4.44	3.74	10.94	15.68
Percent Predators	7.01	26.01	4.44	1.87	1.56	10.81
Percent Scrapers	46.73	26.32	53.33	53.74	28.65	34.05
Percent Shredders	0.93	8.67	5.56	1.40	3.13	5.41
Scraper/Scraper & Collector-Filterers	50.00	5.31	2.67	1.92	0.85	1.75
Shredders/Total	0.01	0.09	0.06	0.01	0.03	0.05
Percent Dominant Taxon	20.56	14.24	18.89	18.22	13.02	14.05
Number Of Dominant Taxa	6	6	8	7	9	4

Table 5.Dominant taxa (>5% of the collection) for the six lower Saluda River rapid bioassessment stations downstream from the
Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County,
South Carolina, 25 and 30 July 2007.

Sta. TR			Sta. SPW			Sta. MR		
Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.
Dicrotendipes sp.	44	20.56	Gammarus sp.	46	14.24	Caecidotea sp.	34	18.89
						Simulium		
Caecidotea sp.	38	17.76	Enallagma sp.	40	12.38	tribulatum/venustrum	20	11.11
Gammarus sp.	35	16.36	Dicrotendipes sp.	31	9.60	Heterocloeon sp.	17	9.44
			Stenacron					
Helisoma anceps	15	7.01	interpunctatum	25	7.74	Physa sp.	16	8.89
Physa sp.	15	7.01	Caecidotea sp.	18	5.57	Helisoma anceps	13	7.22
Tubifex tubifex	15	7.01	Tubifex tubifex	18	5.57	Pseudocloeon propinquum	13	7.22
						Tubifex tubifex	11	6.11
						Cheumatopsyche sp.	9	5.00
			Pseudocloeon					
			propinquum	12	6.25			
			Hydropsyche venularis	11	5.73			

Taxon	No	. Rel. Ab	d. <u>Taxon</u>
Sta. LR			Sta. OB
Table 5	Continued.		

Sta. LR			Sta. OB			Sta. ZO		
Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.
Caecidotea sp.	39	18.22	Baetis intercalaris	25	13.02	Campeloma decisum	26	14.05
Simulium								
tribulatum/venustrum	32	14.95	Hydropsyche betteni	22	11.46	Cheumatopsyche sp.	21	11.35
Physa sp.	22	10.28	Simulium confusum	19	9.90	Gammarus sp.	15	8.11
Tubifex tubifex	16	7.48	Physa sp.	17	8.85	Baetis intercalaris	12	6.49
Cheumatopsyche sp.	15	7.01	Dugesia tigrina	13	6.77			
Baetis intercalaris	13	6.07	Heterocloeon sp. Maccaffertium	12	6.25			
Heterocloeon sp.	12	5.61	modestum	12	6.25			
			Pseudocloeon					
			propinquum	12	6.25			
			Hydropsyche venularis	11	5.73			

Table 6.Results of the linear regressions to detect differences in taxa richness, total abundance, EPT index, EPT abundance, NCBI,
and percentage of the dominant taxon among sampling stations for the rapid bioassessment data collected at six lower
Saluda River stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA
ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007.

RBP July 2	2007:	taxa richness	regressed on st	ation	RBP	July 2007	: EPT abundance	regressed on station	n
Source of Variation	df	SS	F	P-value	Source of Variation	df	SS	F	P-value
Regression	1	0.00420	0.46463	0.53289	Regression	1	0.21837	3.30676	0.14313
Residual	4	0.03618			Residual	4	0.26415		
Total	5	0.04039			Total	5	0.48252		
RBP July 20	07: te	otal abundanc	e regressed on s	station	RB	P July 20	07: NCBI value ro	egressed on station	
Source of Variation	df	SS	F	P-value	Source of Variation	df	SS	F	P-value
Regression	1	0.01571	2.26430	0.20683	Regression	1	0.00515	6.62400	0.06174
Residual	4	0.02775			Residual	4	0.00311		
Total	5	0.04346			Total	5	0.00825		
RBP July	2007:	EPT index r	egressed on sta	tion	RBP July 200'	7: percen	tage of the domina	nt taxon regressed	on station
Source of Variation	df	SS	F	P-value	Source of Variation	$d\!f$	SS	F	P-value
Regression	1	0.11577	10.79712	0.03033	Regression	1	0.00702	1.22523	0.33042
Residual	4	0.04289			Residual	4	0.02291		
Total	5	0.15865			Total	5	0.02992		

Figure 2. Plot comparing NCBI data from rapid bioassessment samples collected from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, collected 11 October 2006.

Table 7.Macroinvertebrates, their NCBI tolerance values (TV), functional feeding groups (FG), and relative abundance for the six
lower Saluda River rapid bioassessment stations downstream from the Saluda Hydroelectric Project (Lake Murray)
operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.

					No.	of Ind	ividua	ls		Relative Abundance					
Seq	Taxon	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO	
Ann	elida														
Hiru	ıdinea														
Rhy	ynchobdellida														
Gle	ossiphoniidae														
1	Helobdella triserialis	9.20	Р		2				1		0.01				0.01
Olig	ochaeta														
Haj	olotaxida														
Lu	mbricidae														
2	Lumbricidae Genus species		SC	2				1		0.01				0.00	
Lur	nbriculida														
Lu	mbriculidae														
3	Lumbriculidae Genus species	7.03	SC	4		2	1	1	1	0.02		0.01	0.00	0.00	0.01
Tuł	oificida														
Tu	bificidae														
4	Tubifex tubifex	10.00	SC	4	5	6	2	4	1	0.02	0.02	0.03	0.01	0.01	0.01
Arthropoda															
Arachnoidea															
Aca	Acariformes														
Ну	Hydrachnidae														
5	Hydrachna sp.	5.53	Р	3	2	1	2			0.01	0.01	0.00	0.01		

				No. of Individuals						Rela	tive A	bunda	nce		
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Cru	Crustacea														
Am	phipoda														
Ga	mmaridae														
6	Gammarus sp.	9.10	OM	38	34	28	8	12	16	0.18	0.14	0.14	0.04	0.04	0.10
Ta	litridae														
7	Hyalella azteca	7.75	OM	7	23		10	2	3	0.03	0.10		0.05	0.01	0.02
Cla	docera														
Da	phnidae														
8	Daphnia sp.		CF						2						0.01
Cyc	lopoida														
Cy	clopidae														
9	Eucyclops agilis		OM			1						0.00			
Dec	apoda														
Ca	mbaridae														
10	Cambaridae Genus species		OM			1	1	3				0.00	0.00	0.01	
Pa	aemonidae														
11	Palaemonetes sp.	7.10	OM	1						0.00					
Isoj	poda														
As	ellidae														
12	Caecidotea sp.	9.11	SC	19	32	22	63	9	5	0.09	0.14	0.11	0.29	0.03	0.03
Ostracoda															
13	Ostracoda Genus species		CF	1						0.00					

Table 7. Continued.

				No. of Individuals						Relative Abundance					
Seq	Taxon	TV FG TR SPW MR LR OB ZO T					TR	SPW	MR	LR	OB	ZO			
Hex	xapoda														
Col	eoptera														
Dy	tiscidae														
14	Neoporus sp.		Р			6						0.03			
Elr	nidae														
15	Ancyronyx variegatus	6.49	CG				1						0.00		
Ha	liplidae														
16	Haliplus fasciatus	8.71	SH	1						0.00					
17	Peltodytes sexmaculatus	8.73	SH	1			1	2	2	0.00			0.00	0.01	0.01
Ну	drophilidae														
18	Tropisternus collaris	9.68	CG					3						0.01	
Dip	tera														
Ce	ratopogonidae														
19	Bezzia/Palpomyia sp.	6.86	Р		2						0.01				
Ch	ironomidae														
20	Ablabesmyia mallochi	7.19	Р				3						0.01		
21	Ablabesmyia peleensis	9.67	Р	1	1					0.00	0.00				
22	Cricotopus sp.	5.29	SH				1						0.00		
23	Dicrotendipes sp.	8.10	CG	9	14	5	7	4	3	0.04	0.06	0.02	0.03	0.01	0.02
24	Orthocladius sp.	5.94	SH		3	5		5	2		0.01	0.02		0.02	0.01
25	Phaenopsectra obediens gr.	6.50	SC		8						0.03				
26	Polypedilum illinoense gr.	9.00	SH	1	1		1	1		0.00	0.00		0.00	0.00	

Table 7. Continued.

				No. of Individuals							Rela	tive A	bunda	nce	
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Ch	ironomidae cont.														
27	Procladius sp.	9.10	Р		1				1		0.00				0.01
28	Rheocricotopus robacki	7.28	CG					1						0.00	
29	Tanytarsus sp.	6.76	CF		2						0.01				
30	Xylotopus par	5.99	CG			1						0.00			
Sir	nuliidae														
31	Simulium confusum	4.00	CF			31	1	8	4			0.15	0.00	0.03	0.02
32	Simulium tribulatum/venustrum	4.00	CF	1		7		3	1	0.00		0.03		0.01	0.01
Tij	pulidae														
33	Tipula sp.	7.33	SH			2						0.01			
Epl	hemeroptera														
Ba	etidae														
34	Baetis intercalaris	4.99	CG			4		46	12			0.02		0.17	0.07
35	Heterocloeon sp.	3.48	SC		7	24	36	7	2		0.03	0.12	0.17	0.03	0.01
36	Procloeon sp.	5.00	OM		3						0.01				
37	Pseudocloeon propinquum	5.77	CG	1		9	7	7		0.00		0.04	0.03	0.03	
Ca	enidae														
38	Caenis sp.	7.41	CG	1						0.00					
He	ptageniidae														
39	Maccaffertium modestum	5.50	SC			5	5	6	17			0.02	0.02	0.02	0.10
40	Stenacron interpunctatum	6.87	SC		2	2	9	2	1		0.01	0.01	0.04	0.01	0.01
41	Stenonema femoratum	7.18	SC		4		1	3			0.02		0.00	0.01	

					No.	of Indi	ividua	ls		Relative Abundanc				nce	
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Het	eroptera														
Co	rixidae														
42	Trichocorixa sp.	9.00	Р		7				4		0.03				0.02
Ge	rridae														
43	Aquarius conformis		Р			1						0.00			
Ve	liidae														
44	Microvelia sp.		Р	4						0.02					
Od	onata														
Ae	shnidae														
45	Anax longipes		Р		3						0.01				
46	Boyeria vinosa	5.89	Р		4	1			1		0.02	0.00			0.01
Ca	lopterygidae														
47	Calopteryx sp.	7.78	Р			1						0.00			
Co	enagrionidae														
48	Argia bipunctulata	8.17	Р		4						0.02				
49	Enallagma sp.	8.91	Р	67	44		2			0.32	0.19		0.01		
50	Ischnura posita	9.52	Р	1	2					0.00	0.01				
Lil	oellulidae														
51	Neurocordulia sp.	5.03	Р	1	2				4	0.00	0.01				0.02

Table 7. Continued.

				No. of Individuals						Rela	tive A	bunda	nce		
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Tri	choptera														
Ну	dropsychidae														
52	Cheumatopsyche sp.	6.22	CF				6	9	2				0.03	0.03	0.01
53	Hydropsyche betteni	7.78	CF		5	2	2	22	5		0.02	0.01	0.01	0.08	0.03
54	Hydropsyche mississippiensis		CF					55	12					0.20	0.07
55	Hydropsyche venularis	4.96	CF		1		2	10	16		0.00		0.01	0.04	0.10
Ну	droptilidae														
56	Hydroptila sp.	6.22	SC	1		3	4	2	3	0.00		0.01	0.02	0.01	0.02
Le	pidostomatidae														
57	Lepidostoma sp.	0.90	SH					3	2					0.01	0.01
Le	ptoceridae														
58	Mystacides sepulchralis	2.69	CG				1						0.00		
Po	lycentropodidae														
59	Neureclipsis crepuscularis	4.19	CF				1						0.00		
Ps	ychomyiidae														
60	Lype diversa	4.05	SC				1						0.00		
Mol	lusca														
Biva	alvia														
Un	ionoida														
Co	orbiculidae														
61	Corbicula fluminea	6.12	CF				2	1					0.01	0.00	

				No. of Individuals					Relative Abundance						
Seq	Taxon	TV	FG	TR	SPW	MR	LR	OB	ZO	TR	SPW	MR	LR	OB	ZO
Sp	haeriidae														
62	Sphaeriidae Genus species		CF		1						0.00				
Gas	tropoda														
Lin	mophila														
An	cylidae														
63	Ferrissia sp.	6.55	SC	1						0.00					
Ph	ysidae														
64	Physa sp.	8.84	SC	29	8	6	21	22	2	0.14	0.03	0.03	0.10	0.08	0.01
Pla	norbidae														
65	Gyraulus parvus	4.23	SC				4		1				0.02		0.01
66	Helisoma anceps	6.23	SC	7	8	22	5	12	10	0.03	0.03	0.11	0.02	0.04	0.06
Me	sogastropoda														
Ну	drobiidae														
67	Somatogyrus virginicus	6.37	SC					3	8					0.01	0.05
Viv	viparidae														
68	Campeloma decisum		SC						16						0.10
Platy	vhelminthes														
Tur	bellaria														
Tri	cladida														
Pla	nariidae														
69	Dugesia tigrina	7.23	OM	2	2	3	4	2	8	0.01	0.01	0.01	0.02	0.01	0.05

Table 7. Continued.

Table 8.Bioassessment metrics for the six lower Saluda River rapid bioassessment stations
downstream from the Saluda Hydroelectric Project (Lake Murray) operated by
SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19
September 2007.

			Sta	tion		
Metric	TR	SPW	MR	LR	OB	ZO
Taxa Richness	26	31	27	32	32	32
Number of Specimens	208	237	201	215	271	168
EPT Index	3	6	7	12	12	10
EPT Abundance	3	22	49	75	172	72
Chironomidae Taxa	3	7	3	4	4	3
Chironomidae Abundance	11	30	11	12	11	6
EPT/Chironomidae Abundance	0.27	0.73	4.45	6.25	15.64	12.00
North Carolina Biotic Index	8.29	7.87	6.51	6.87	6.70	6.49
SCDHEC Bioclassification	1.0	1.2	2.3	2.0	2.3	1.5
Percent Collector-Filterers	0.96	3.80	19.90	6.51	39.85	25.00
Percent Collector-Gatherers	5.29	5.91	9.45	7.44	22.51	8.93
Percent Omnivores	23.08	26.16	16.42	10.70	7.01	16.07
Percent Predators	37.02	31.22	4.98	3.26	0.00	6.55
Percent Scrapers	32.21	31.22	45.77	70.70	26.57	39.88
Percent Shredders	1.44	1.69	3.48	1.40	4.06	3.57
Scraper/Scraper & Collector-Filterers	33.50	8.22	2.30	10.86	0.67	1.60
Shredders/Total	0.01	0.02	0.03	0.01	0.04	0.04
Percent Dominant Taxon	32.21	18.57	15.42	29.30	20.30	10.12
Number Of Dominant Taxa	4	5	5	3	4	7

Table 9.Dominant taxa (>5% of the collection) for the six lower Saluda River rapid bioassessment stations downstream from the
Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County,
South Carolina, 19 September 2007.

Sta. TR			Sta. SPW			Sta. MR		
Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.
Enallagma sp.	67	32.21	Enallagma sp.	44	18.57	Simulium confusum	31	15.42
Gammarus sp.	38	18.27	Gammarus sp.	34	14.35	Gammarus sp.	28	13.93
Physa sp.	29	13.94	Caecidotea sp.	32	13.50	Heterocloeon sp.	24	11.94
Caecidotea sp.	19	9.13	Hyalella azteca	23	9.70	Caecidotea sp.	22	10.95
			Dicrotendipes sp.	14	5.91	Helisoma anceps	22	10.95
Sta. LR			Sta. OB			Sta. ZO		
Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.	Taxon	No.	Rel. Abd.
Caecidotea sp.	63	29.30	Hydropsyche	55	20.30	Maccaffertium modestum	17	10.12
Heterocloeon sp.	36	16.74	Baetis intercalaris	46	16.97	Campeloma decisum	16	9.52
Physa sp.	21	9.77	Hydropsyche betteni	22	8.12	Gammarus sp.	16	9.52
			Physa sp.	22	8.12	Hydropsyche venularis	16	9.52
						Baetis intercalaris	12	7.14
						Hydropsyche mississippiensis	12	7.14
						Helisoma anceps	10	5.95

Table 10. Results of the linear regressions to detect differences in taxa richness, total abundance, EPT index, EPT abundance, NCBI, and percentage of the dominant taxon among sampling stations for the rapid bioassessment data collected at six lower Saluda River stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 19 September 2007.

RBP Septemb	er 200	7: taxa richn	ess regressed o	n station	RBP Sep	tember 2	007: EPT abunda	nce regressed on sta	tion
Source of Variation	df	SS	F	P-value	Source of Variation	df	SS	F	P-value
Regression	1	0.00388	3.82791	0.12204	Regression	1	1.18591	10.99311	0.02950
Residual	4	0.00406			Residual	4	0.43151		
Total	5	0.00794			Total	5	1.61741		
RBP September	r 2007	: total abunda	ance regressed	on station	RBP S	eptember	2007: NCBI valu	e regressed on statio)n
Source of Variation	df	SS	F	P-value	Source of Variation	df	SS	F	P-value
Regression	1	0.00050	0.08473	0.78546	Regression	1	0.00567	9.83703	0.03497
Residual	4	0.02369			Residual	4	0.00231		
Total	5	0.02420			Total	5	0.00797		
RBP Septem	ber 20	07: EPT inde	x regressed on	station	RBP September 2	2007: per	centage of the dom	ninant taxon regress	ed on station
Source of Variation	df	SS	F	P-value	Source of Variation	df	SS	F	P-value
Regression	1	0.15729	16.55596	0.01524	Regression	1	0.02726	0.86567	0.40483
Residual	4	0.03800			Residual	4	0.12594		
Total	5	0.19530			Total	5	0.15320		

Figure 3. Plot comparing EPT indices from rapid bioassessment samples collected from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, collected 19 September 2007.

Table 11. Results of the two-factor ANOVA without replication to detect differences in taxa richness between samples collected on 25 and 30 July 2007 and 19 September 2007.

ANOVA for Taxa Richness													
Source of Variation	SS	df	MS	\mathbf{F}	P-value	F crit							
Station	0.03320	5	0.00664	2.19517	0.20423	5.05033							
Month	0.00054	1	0.00054	0.17978	0.68919	6.60789							
Error	0.01513	5	0.00303										
Total	0.04887	11											

Table 12. Results of the two-factor ANOVA without replication to detect differences in total abundance between samples collected on 25 and 30 July 2007 and 19 September 2007.

	ANOVA for Total Abundance														
Source of Variation	SS	df	MS	\mathbf{F}	P-value	F crit									
Station	0.04551	5	0.00910	2.05498	0.22403	5.05033									
Month	0.00001	1	0.00001	0.00220	0.96441	6.60789									
Error	0.02215	5	0.00443												
Total	0.06767	11													

Table 13. Results of the two-factor ANOVA without replication to detect differences in EPT index values between samples collected on 25 and 30 July 2007 and 19 September 2007.

	ANC	OVA for E	PT Index vo	alues		
Source of Variation	SS	df	MS	F	P-value	F crit
Station	0.32522	5	0.06504	11.31868	0.00933	5.05033
Month	0.00030	1	0.00030	0.05155	0.82938	6.60789
Error	0.02873	5	0.00575			
Total	0.35425	11				

Table 14. Results of the two-factor ANOVA without replication to detect differences in EPT Abundance between samples collected on 25 and 30 July 2007 and 19 September 2007.

	AN	OVA for E	PT Abunda	ince		
Source of Variation	SS	df	MS	\mathbf{F}	P-value	F crit
Station	1.89295	5	0.37859	9.14559	0.01485	5.05033
Month	0.02863	1	0.02863	0.69172	0.44347	6.60789
Error	0.20698	5	0.04140			
Total	2.12857	11				

Table 15. Results of the two-factor ANOVA without replication to detect differences in NCBI between samples collected on 25 and 30 July 2007 and 19 September 2007.

	ANOVA for NCBI														
Source of Variation	SS	df	MS	F	P-value	F crit									
Station	0.01495	5	0.00299	11.72379	0.00863	5.05033									
Month	0.00031	1	0.00031	1.20907	0.32162	6.60789									
Error	0.00128	5	0.00026												
Total	0.01654	11													

Table 16. Results of the two-factor ANOVA without replication to detect differences in percent dominant taxon between samples collected on 25 and 30 July 2007 and 19 September 2007.

	ANOVA	for Perce	nt Dominar	t Taxon		
Source of Variation	SS	df	MS	F	P-value	F crit
Station	0.12919	5	0.02584	2.39509	0.17989	5.05033
Month	0.01770	1	0.01770	1.64065	0.25643	6.60789
Error	0.05394	5	0.01079			
Total	0.20082	11				

Figure 4. Plots comparing data from rapid bioassessment samples collected on 25 and 30 July 2007 and 19 September 2007 from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina.

Table 17. Macroinvertebrates, their NCBI tolerance values (TV) and functional feeding groups (FG) for the six lower Saluda River Hester Dendy stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007 to 19 September 2007

				No. of Individuals														
Seq Taxon	TV	FG	TR1	TR2	TR3	SPW1	2MQ2	8 EMdS	MR1	MR2	LR1	LR2	LR3	0B1	0B2	Z01	Z02	£03
Annelida																		
Hirudinea																		
Rhynchobdellida																		
Glossiphoniidae																		
1 Helobdella triserialis	9.20	Р								1	3		1					
Piscicolidae																		
2 Myzobdella sp.		Р				2												
Oligochaeta																		
Lumbriculida																		
Lumbriculidae																		
3 Lumbriculidae Genus species	7.03	SC		1	2	5		1	1	3								
Tubificida																		
Naididae																		
4 Dero sp.	9.00	SC															1	
Tubificidae																		
5 Tubifex tubifex	10.00	SC	1	3	3				2	1		2	4	4	3		1	1

Table 17. Continued.

										No.	of Inc	dividu	als						
Seq	Taxon	ту	FG	TR1	TR2	TR3	SPW1	SPW2	SPW3	MR1	MR2	LR1	LR2	LR3	OB1	OB2	Z01	Z02	Z03
Arth	ropoda																		
Cru	stacea																		
Am	phipoda																		
Ga	mmaridae																		
6	Gammarus sp.	9.10	OM	19	10	13	26	6	12	46	21	4	13	7	2		3	2	1
Ta	litridae																		
7	Hyalella azteca	7.75	OM	18	3	1	80	5	31	7	10	23	21	16	1		6	2	2
Dec	apoda																		
Ca	mbaridae																		
8	Cambaridae Genus species		OM					1											
Isoj	poda																		
As	ellidae																		
9	Caecidotea sp.	9.11	SC	64	23	18	90	40	167	73	50	32	40	33	17		3	3	10
Osti	acoda																		
10	Ostracoda Genus species		CF						3									1	
Hex	apoda																		
Col	eoptera																		
Elr	nidae																		
11	Ancyronyx variegatus	6.49	CG										2	7			1	1	1
12	Dubiraphia quadrinotata	5.93	CG														51	8	9

				No. of Individuals															
				IR1	IR2	IR3	PW1	PW2	PW3	AR1	AR2	LR1	LR2	LR3)B1	OB2	201	202	203
Seq	Taxon	TV	FG				S	S	S	4	4	Γ	Γ	ſ)	•			
Elr	nidae cont.																		
13	Dubiraphia sp.	5.93	CG									1					1	2	1
14	Macronychus glabratus	4.58	CG									1		3	2	2			2
15	Stenelmis sp.	5.10	SC															1	
Ну	drochidae																		
16	Hydrochus sp.	6.55	SH												1				
Dip	tera																		
Ch	ironomidae																		
17	Ablabesmyia mallochi	7.19	Р								2	3	1	2					
18	Corynoneura sp.	6.01	CG			1				4						1			
19	Dicrotendipes sp.	8.10	CG	5	65	38	4	4	18	7	3		1		1				
20	Nanocladius sp.	7.07	CG						1	1									
21	Orthocladius sp.	5.94	SH		1					3					6	5			
22	Parachironomus sp.	9.42	Р											1					
23	Phaenopsectra obediens gr.	6.50	SC					2											
24	Phaenopsectra punctipes gr.	6.50	SC									1							
25	Polypedilum fallax gr.	6.39	SH								1								
26	Polypedilum flavum	5.78	SH													1			
27	Polypedilum illinoense gr.	9.00	SH							1			1	1					
28	Rheocricotopus robacki	7.28	CG	1	1						1		1						

Table	e 17.	Continued.

										No.	of In	dividu	ials						
Seq	Taxon	TV	FG	TR1	TR2	TR3	SPW1	SPW2	SPW3	MR1	MR2	LR1	LR2	LR3	OB1	OB2	Z01	Z02	Z03
Ch	ironomidae cont.																		
29	Rheotanytarsus exiguus gr.	5.89	CF												4	2			
30	Thienemannimyia gr.	8.42	Р												2				
31	Xestochironomus sp.		Р											2		1			
Tip	oulidae																		
32	Antocha sp.	4.25	CG												7	2			
33	Tipula sp.	7.33	SH										1						
Epł	nemeroptera																		
Ba	etidae																		
34	Baetis sp.	4.71	CG								1					2			
Не	ptageniidae																		
35	Maccaffertium modestum	5.50	SC								3				2	4			1
36	Stenacron interpunctatum	6.87	SC					2	1	3	1	7	3	6	4		1		
Het	eroptera																		
Ve	liidae																		
37	Microvelia sp.		Р							1		2			1				
Ode	onata																		
Ae	shnidae																		
38	Boyeria vinosa	5.89	Р																1

Table	e 17.	Continued.

										No.	of In	dividu	als						
Seq	Taxon	TV	FG	TR1	TR2	TR3	SPW1	SPW2	8PW3	MR1	MR2	LR1	LR2	LR3	OB1	OB2	Z01	Z02	Z03
Co	enagrionidae																		
39	Argia bipunctulata	8.17	Р														1		
40	40 Enallagma sp.		Р														1		
Trie	choptera																		
Brachycentridae																			
41 Micrasema sp.			SH							1	2					2			
Hydropsychidae																			
42	Cheumatopsyche sp.	6.22	CF			1				3	1			2	18	23		2	
43	Hydropsyche betteni	7.78	CF												17	9			
44	Hydropsyche mississippiensis		CF												17	5			
45	Hydropsyche venularis	4.96	CF												34	39		1	
Ну	droptilidae																		
46	Hydroptila sp.	6.22	SC	2	25	12		3	1	62	6	4	1	2	11	6	1	2	
Le	ptoceridae																		
47	Oecetis avara	4.70	Р										4	4			2	1	
48	Triaenodes sp.	4.46	SH								1					1			
Pol	ycentropodidae																		
49	Cernotina sp.		Р					1	1		1	2							
50	Phylocentropus placidus	6.20	CF									6	1	5	2			2	

										No.	of In	dividu	als						
Seq	Taxon	TV	FG	TR1	TR2	TR3	SPW1	SPW2	SPW3	MR1	MR2	LR1	LR2	LR3	0B1	OB2	Z01	Z02	Z03
Mollusca																			
Biva	lvia																		
Uni	onoida																		
Corbiculidae																			
51	Corbicula fluminea	6.12	CF				5				1			4			2	3	3
Gast	tropoda																		
Limnophila																			
An	cylidae																		
52	Ferrissia sp.	6.55	SC				4		1	1	1						1		
Ph	ysidae																		
53	Physa sp.	8.84	SC			2				3	11	2	8	15	2		6	3	2
Pla	norbidae																		
54	Gyraulus parvus	4.23	SC		1												7	1	
55	Helisoma anceps	6.23	SC	3	7	3	4	5	1	1	1	2	2		1	1	1	3	
Mes	sogastropoda																		
Ну	drobiidae																		
56	Somatogyrus virginicus	6.37	SC														31	13	12

Table	17.	Continued.

Seq Taxon	TV	FG	TR1	TR2	TR3	SPW1	SPW2	SPW3	MR1	MR2	LR1	LR2	LR3	OB1	OB2	Z01	Z02	Z03
Platyhelminthes																		
Turbellaria																		
Tricladida																		
Planariidae																		
57 Dugesia tigrina	7.23	OM										2	1			4	5	

Table 18. Bioassessment metrics for the six lower Saluda River Hester Dendy stations downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007 to 19 September 2007.

Metric	TR1	TR2	TR3	SPW1	SPW2	SPW3	MR1	MR2	LR1	LR2	LR3	OB1	OB2	Z01	ZO2	ZO3
Taxa Richness	8	11	11	9	10	12	18	22	15	17	19	22	18	18	21	13
Number of Specimens	113	140	94	220	69	238	220	123	93	104	116	156	109	123	58	46
EPT Index	1	1	2	0	3	3	4	8	4	4	5	8	9	3	5	1
EPT Abundance	2	25	13	0	6	3	69	16	19	9	19	105	91	4	8	1
Chironomidae Taxa	2	3	2	1	2	2	5	4	2	4	4	4	5	0	0	0
Chironomidae Abundance	6	67	39	4	6	19	16	7	4	4	6	13	10	0	0	0
EPT/Chironomidae Abundance	0.33	0.37	0.33	0.00	1.00	0.16	4.31	2.29	4.75	2.25	3.17	8.08	9.10	-	-	-
North Carolina Biotic Index	8.36	7.96	8.04	8.04	8.02	8.27	7.71	7.97	7.79	8.04	7.76	6.84	6.05	6.83	6.83	7.29
SCDHEC Bioclassification	1.0	1.0	1.0	1.0	1.0	1.0	1.3	1.5	1.2	1.0	1.2	2.0	2.8	1.5	1.5	1.5
Percent Collector-Filterers	0.00	0.00	1.06	2 27	0.00	0.00	1 36	1.63	6 4 5	0.96	9 4 8	58 97	71 56	1.63	13 79	6 52
Percent Collector-Gatherers	5 31	47 14	41 49	1.82	5.80	9.00	5 4 5	4 07	2.15	3.85	8.62	641	6 42	43.09	20.69	28.26
Percent Omnivores	32.74	9 2 9	14 89	48.18	17 39	18.07	24 09	25.20	29.03	34 62	20.69	1.92	0.00	10.57	15 52	6.52
Percent Predators	0.00	0.00	0.00	0.91	1.45	0.42	0.45	3.25	10.75	4.81	8.62	1.92	0.92	3.25	1.72	2.17
Percent Scrapers	61.95	42.86	42.55	46.82	75.36	72.27	66.36	62.60	51.61	53.85	51.72	26.28	12.84	41.46	48.28	56.52
Percent Shredders	0.00	0.71	0.00	0.00	0.00	0.00	2.27	3.25	0.00	1.92	0.86	4.49	8.26	0.00	0.00	0.00
				• • • • •			10.7-					o 4 -				o (=
Scraper/Scraper & Collector-Filterers	-	-	40.00	20.60	-	-	48.67	38.50	8.00	56.00	5.45	0.45	0.18	25.50	3.50	8.67
Shredders/Total	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.03	0.00	0.02	0.01	0.04	0.08	0.00	0.00	0.00
Percent Dominant Taxon	56.64	46.43	40.43	40.91	57.97	70.17	33.18	40.65	34.41	38.46	28.45	21.79	35.78	41.46	22.41	26.09
Number Of Dominant Taxa	3	5	4	3	5	4	3	4	4	4	6	6	4	3	7	4

Table 19. Results of the linear regressions to detect differences in taxa richness, total abundance, EPT index, EPT abundance, NCBI, and percentage of the dominant taxon among sampling stations for the Hester Dendy data collected on the lower Saluda River, downstream from the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, 25 and 30 July 2007 to 19 September 2007.

Hester Dend	ły 200'	7: taxa richnes	s regressed on	station	Hester Dendy 2007: EPT abundance regressed on station								
Source of Variation	df	SS	F	P-value	Source of Variation df SS F P-value								
Regression	1	0.15502	19.10946	0.00064	Regression 1 0.37939 1.12929 0.30591								
Residual	14	0.11357			Residual 14 4.70337								
Total	15	0.26859	_		Total 15 5.08276								
Hester Dendy	2007:	total abundar	nce regressed of	n station	Hester Dendy 2007: NCBI value regressed on station								
Source of Variation	df	SS	F	P-value	Source of Variation df SS F P-value								
Regression	1	0.09918	2.84034	0.11408	Regression 1 0.00963 16.65633 0.00112								
Residual	14	0.48885			Residual 14 0.00809								
Total	15	0.58803	_		Total 15 0.01772								
Hester Der	ndy 20	07: EPT index	regressed on st	ation	Hester Dendy 2007: percentage of the dominant taxon regressed on station								
Source of Variation	df	SS	F	P-value	Source of Variation df SS F P-value								
Regression	1	0.32324	5.50206	0.03425	Regression 1 0.16642 18.93456 0.00066								
Residual	14	0.82249			Residual 14 0.12305								
Total	15	1.14573	_		Total 15 0.28947								

Figure 5. Plot comparing data from Hester Dendy samples collected from the lower Saluda River, downstream of the Saluda Hydroelectric Project (Lake Murray) operated by SOUTH CAROLINA ELECTRIC & GAS, Lexington County, South Carolina, retrieved 05 and 19 September 2007.

Figure 5. Continued.

